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What	  are	  discrete	  solvers?	  

q  Nonlinear equations solvers 
q  Linear equations solvers 
q  Eigen solvers 
q  Time integrators 

q  Focus on linear equations solvers 
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What	  are	  the	  exascale	  challenges?	  

q  High degree of parallelism 
q  Algorithmic scalability on heterogeneous systems 
q  Deep memory hierarchy – data movement or communication 
q  Limited memory size per code 
q  Resilience 

q  The DOE report on Applied Mathematics Research for Exascale 
Computing identified a number of applied math research areas 
that aim at tackling these challenges for discrete solvers 
§ We will provide some examples to illustrate why and how those areas 

might be appropriate at exascale 
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Multiple-‐precision	  algorithms	  

q  Facts … 
§  Lower precision ops are often faster than higher precision ops 
§  Lower precisions require less memory ==> require less data movement 

q  Use of multiple precisions is not new … 
§  E.g., Kurzak & Dongarra (Concurrency and Computation: Practice & 

Experience, 2007) 
�  Gaussian elimination in single precision and iterative refinements in double 

precision 
§  But may become more important in exascale for data movement and 

limited memory reasons 

q  Open questions … 
§  Determining when lower/higher precisions should be used in different 

parts of other types of matrix algorithms 
§  Reliability, robustness, accuracy of multi-precision algorithms? 



Computational Research Division 

Data	  compression	  

q  Matrix computation is data intensive 
==> require lot of data movement/communication 

q  Example … 

§  One of the recent active research areas has focused on using some 
form of data compression to improve the performance of certain 
classes of matrix solvers 

§  For matrices arising from the solution of PDEs with smooth kernels, 
off-diagonal blocks in the LU factorization often have low rank 
�  Gu, Li, Xia, … 
� Weisbecker, … 
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Data	  compression	  in	  sparse	  matrix	  factorization	  

q  General idea … 
§  Apply SVD to a rank-deficient 

off-diagonal block 
==> obtain a compact representation 

§  Can apply the idea recursively and 
result in a hierarchical structure 

q  Advantages … 
§  Lower storage requirements but essentially maintaining same accuracy 
§  Result in less communication because the compact representation has 

to move less data 
§  Also often require fewer operations overall (even though additional 

work is required to compute the compression) 



Computational Research Division 

Data	  compression	  in	  sparse	  matrix	  factorization	  

q  Test problem (Li):  3D seismic imaging – Helmholtz equations up to 
6003 cubic grids (216M equations) 
�  16,000+ cores:  2x faster, uses 1/5 of memory vs a sparse direct solver 

based on Gaussian elimination 

q  Open questions … 
§  Generalizations to other classes of matrices? 
�  For other matrices, can use the approach to compute approximations, 

which can then be used as preconditioners 

§  Data compression in other matrix algorithms? 
§  Complexity analysis - Trade off between compression cost and possible 

reduction in memory? 
§  Robustness, reliability, accuracy? 
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Randomization	  and	  Sampling	  

q  Randomized algorithms have gained quite a bit of popularity in 
recent years. 
§  Not entirely because of exascale computing 
§  But some interesting ideas here 

q  Example … 

§  Consider an m x n matrix A, where m and n are very large. 
§  Suppose we want to get a low-rank approximation of A. 
�  Best rank-k approximation can be obtained using SVD 
�  But require access to the entire matrix A 
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Randomized	  algorithms	  

q  Friedland, Mehrmann, Miedlar, Nkengla (2011) … 

§  Choose p and tmax 

§  Repeat tmax times 
�  Generate index sets I and J of size p at random 
�  Determine numerical rank rIJ of A(I,J) 
�  Compute πIJ = product of the first rIJ singular values of A(I,J) 

§  Consider those A(I,J) for which rIJ are the largest and pick the one such 
that πIJ is the largest. Compute the best rank-k approximation of this 
particular A(I,J) … denote by AIJk 
�  Let C = A(:,J) and R = A(I,:) 
�  Let B be the pseudo-inverse of AIJk 
�  Use CBR as a rank-k approximation of A 
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Randomized	  algorithms	  

q  Does it really work? 
§  Apparently work on matrices from image processing 
§  Can be extended to tensors 

q  Advantages … 
§  Do not need entire A; just need to be able to sample A 
§  Completely parallel 
�  Can start different sequences of samples in parallel 
�  Can try different tmax 

q  Open questions … 
§  Other matrix problems?  Other scientific problems? 
§  Other randomization/sampling techniques? 
§  Robustness, reliability, accuracy? 
§ What if the approach fails? 
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Communication	  reduction	  

q  Communication is becoming more and more expensive relative to 
computation 
§  Either moving data within the local memory system or across the 

network in a distributed memory setting 

q  Important to design algorithms to reduce the amount of 
communication as much as possible 

q  Example … 
§  QR factorization of a tall, skinny matrix 
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Communication	  reduction	  in	  QR	  factorization	  

q  Demmel, Grigori, Hoemmen, Langou (2008) 

§  Consider computing the QR factorization 
of an m x n dense matrix A, where m >> n 

§  TSQR (Tall Skinny QR): 
�  Orthogonal reductions based on a binary 

tree 
�  Partition rows of A into blocks and 

compute QR factorization of each block 
�  Reduce the triangular factors in a 

pairwise fashion 
�  Then continue the reduction repeatedly 

until only one triangular factor is left 
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Communication	  reduction	  in	  QR	  factorization	  
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q  New? 
§  Maybe … proposed in 80’s for 

sparse matrix computation 

q  More storage if Q is needed; 
more computation 
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Communication	  reduction	  in	  QR	  factorization	  

q  Complexity … 

§  P processors, 
1D mapping, 
counting along 
critical path 

§ m = 100,000, 
 
 
time in seconds  

TSQR ScaLAPACK 

# messages log(P) 2n log(P) 

# words ½[n2 log(P)] ½[n2 log(P)] 

# flops (1/P)[2mn2] + ⅔[n3 log(P)] (1/P)[2mn2] + ½[n2 log(P)] 

  
n/ P⎡
⎢

⎤
⎥ = 50,

P TSQR ScaLAPACK 

1 9.68 12.63 

2 15.71 19.88 

4 16.07 19.59 

8 11.41 17.85 

16 9.75 17.29 

32 8.15 16.95 

64 9.46 17.74 
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Synchronization	  reduction	  

q  Synchronizations can be become bottlenecks 
§  Known for a long time 
§  But may become worse under exascale 

 
q  Example … 

§  The conjugate gradient algorithm 
�  An iterative method for solving sparse system of 

linear equations 
�  Rely on matrix-vector multiplication and inner 

products   
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q  Also not new … 
§  D’Azevedo, Eijkhout, Romine 

(1993) 
�  The two are mathematically 

equivalent 

�  Based on identities in conjugate 
gradient 

q  There are other variants, but 
not all have the same 
numerical behavior 

One	  step	  of	  the	  conjugate	  gradient	  algorithm	  
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Comm/Sync	  avoiding/reducing	  algorithms	  

q  Notes … 
§  Some of the ideas in some of these algorithms are not entirely new, 

but being re-discovered 
§  It’s often the case that such algorithms may require more memory 

and/or more computation 
§  Some algorithms have communication/synchronization complexities 

that match lower bounds (Demmel’s group) 
§  In some cases, the algorithms may not be as stable as conventional 

algorithms 

q  Open questions … 
§  New algorithms that require less communication/synchronization? 
§  Can an existing algorithm be reformulated to reduce communication/

synchronization? 
§  Numerical behavior of such algorithms? 
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Fine-‐grained	  parallel	  algorithms	  

q  Exascale computing promises high degree of parallelism 
q  Fine-grained parallel algorithms for matrix problems? 
q  Probably need to come up with out-of-the-box ideas 

q  Example … 
§  Compute an incomplete LU factorization 
§  Traditional approaches – incomplete version of Gaussian elimination 
§  Chow (2014) 
�  All nonzero entries of L and U are computed in parallel and asynchronously 
�  Let S be the desired sparsity pattern of L+U 
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Fine-‐grained	  ILU	  

q  Compute 
 
subject to 

q  This results in 
 
 
 
which is just a nonlinear equation of the form x = G(x) 
§  Starting with an initial guess of L and U, one can iterate until 

convergence 
§  In the extreme case, each Lij/Uij can be assigned to one processing 

unit and computed asynchronously, leading to a very fine-grained 
parallel algorithm 
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Fine-‐grained	  parallel	  algorithms	  

q  Results … 
§  See Hittinger’s talk 

q  Advantages … 
§  Since L, U are incomplete factors, really no need to compute them 

accurately ==> just a few iteration may be enough 
§  Possibility of exploiting a lot of cores 

q  Open questions … 
§  Similar fine-grained algorithms for other matrix problems? 
§  Techniques for solving the nonlinear equations? 
�  Converge to the desired solution? 
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Resilience	  

q  Resilience is concerned with dealing with and recovering from 
faults 

q  Example … 
§  Suppose we are solving a linear system 

 
§  Suppose there is a fault and x1 needs to be recovered 
§  Assume that x2 is known and the value is trustworthy 
§  How can x1 be recovered? 
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Resilient	  linear	  solvers	  

q  Langou, Chen, Bosilca, Dongarra (2007) 
§  Linear interpolation: Solve A11 x1 = b1 – A12 x2 

§  A-norm of forward error associated with iterates computed by 
restarted CG or PCG is monotonically decreasing 

q  Giraud et al (2014) 
§  Least squares interpolation 

§  Solve for x1 as a least squares problem 
§  Monotonic decrease of residual norm of minimal residual Krylov 

subspace methods after restart 
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Resilient	  linear	  solvers	  

q  Techniques can be extended to multiple faults 
q  Similar ideas can be applied to eigenvalue problems 

q  Open problems … 
§  Resilient algorithms for other matrix problems? 
§  Numerical behavior of such algorithms? 
§ What to do if recovery fails? 



Computational Research Division 

Summary	  

q  Challenges along the path to exascale … 
§  High degree of parallelism 
§  High communication & synchronization overhead 
§  Deep memory hierarchy 
§  Limited memory 
§  Resilience 

q  What we need to overcome these challenges … 
§  Some existing approach may evolve 
§  Re-visit old ideas 
§  Need new and out-of-the-box ideas 
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Summary	  

q  Research opportunities … 
§  Fine-grained parallel algorithms 
§  Communication and synchronization avoiding/reduction algorithms 
§  Algorithms based on randomization and sampling 
§  Multiple-precision algorithms 
§  Use of data compression 
§  Resilient algorithms 

q  One of the common themes … 
§  Robustness, reliability, accuracy 


